Assignment sheet The Fourier transform

- 1. Let $f \in \mathfrak{F}_a$ with a > 0, then show that $f^{(n)} \in \mathfrak{F}_b$, $\forall n \in \mathbb{N}, 0 \le b < a$.
- 2. Compute the Fourier transform of (i) $e^{-\pi x^2}$, (ii) $\frac{1}{\pi} \frac{y}{y^2 + x^2}$, (iii) $\operatorname{sech}(\pi x)$.
- 3. Suppose $f \in \mathfrak{F}_a$, $0 < b < a, x, R \in \mathbb{R}$ and V is the line joining R ib, R + ib, then find $\lim_{R \to \infty} \int\limits_V \frac{f(z)}{z x} dz$, $\lim_{R \to -\infty} \int\limits_V \frac{f(z)}{z x} dz$.
- 4. Suppose f is continuous and of moderate decrease, and $\hat{f}(\xi) = 0$, $\forall \xi \in \mathbb{R}$. Then show that f = 0.

Hint: Fix
$$t \in \mathbb{R}$$
. Set $A(z) = \int_{-\infty}^{t} f(x)e^{-2\pi iz(x-t)}dx$, $B(z) = -\int_{t}^{\infty} f(x)e^{-2\pi iz(x-t)}dx$,

$$F(z) = \begin{cases} A(z), & \text{Im}(z) \ge 0, \\ B(z), & \text{Im}(z) < 0. \end{cases}$$
 Show that F is entire, bounded function. Then show

that
$$F \equiv 0$$
. From this deduce that $\int_{-\infty}^{t} f(x)dx = 0, \forall t \in \mathbb{R}$, and conclude $f \equiv 0$.

5. Verify the Fourier inversion formula for the functions given in Exercise 2.

6. If
$$A > 0$$
, $B \in \mathbb{R}$, then find $\int_{0}^{\infty} e^{-(A+iB)x} dx$.

7. If
$$g: \mathbb{R} \to \mathbb{C}$$
 be continuous, then show that $f(z) = \int_{-n}^{n} g(t)e^{2\pi itz}dt$ is entire.

8. Let f has moderate decrease, $a \in \mathbb{R}$, t > 0. Then prove that following:

(i) If
$$g_1(x) = f(x)e^{2\pi i a x}$$
, then $\hat{g}_1(\xi) = \hat{f}(\xi - a)$,

(ii) If
$$g_2(x) = f(x - a)$$
, then $\hat{g}_2(\xi) = \hat{f}(\xi)e^{-2\pi i a \xi}$,

(iii) If
$$g_3(x) = f(\frac{x}{t})$$
, then $\hat{g}_3(\xi) = t\hat{f}(t\xi)$.

9. Prove the following identities for $a \in \mathbb{R}$, t > 0.

(i)
$$\sum_{n=-\infty}^{\infty} e^{-\pi t(n+a)^2} = \sum_{n=-\infty}^{\infty} e^{-\frac{\pi n^2}{t}} \frac{e^{2\pi i a n}}{\sqrt{t}},$$

$$(ii) \sum_{n=-\infty}^{\infty} \frac{e^{-2\pi i a n}}{\cosh(\frac{n\pi}{t})} = \sum_{n=-\infty}^{\infty} \frac{t}{\cosh(\pi t (n+a))},$$

(iii)
$$\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{a}{a^2 + n^2} = \sum_{n=-\infty}^{\infty} e^{-2\pi a|n|} = \coth(\pi a).$$

10. Prove or disprove: The function $f(z) = e^{z^2}$ satisfies the maximum modulus priciple in any unbounded domain.

11. Fix $\theta_1, \theta_2 \in (0, 2\pi)$ such that $\theta_2 - \theta_1 = \frac{\pi}{\beta}$, and $S = \{re^{i\theta} : r > 0, \theta_1 < \theta < \theta_2\}$. Suppose $F : \bar{S} \to \mathbb{C}$ is continuous, holomorphic on S, and $|F(z)| \leq 1$, $z \in \partial S$. If there exist C, a > 0, $\alpha \in (0, \beta)$ such that $|F(z)| \leq Ce^{a|z|^{\alpha}}$, $\forall z \in S$, then prove that $|F(z)| \leq 1$, $\forall z \in S$.

<u>Hint</u>: Use the technique which is employed the proof of the Phragmén-Lindelöf theorem.